O učebnici
Sbírka úloh z učiva střední školy je určena k opakování a procvičování učiva k maturitě a k přípravě na přijímací zkoušky z matematiky na vysoké školy.
Obsah sbírky je zpracován v souladu s Rámcovým vzdělávacím programem pro gymnázia, vydaným Ministerstvem školství, mládeže a tělovýchovy České republiky.
Sbírka je členěna podle tematických celků do 20 kapitol. Úlohy jsou seřazeny nejen podle tematických celků, ale v rámci jednotlivých kapitol jsou i dále systematicky uspořádány. K lepší orientaci slouží podrobně zpracovaný obsah. Sbírka obsahuje celkem 1 200 číslovaných úloh s mnoha obměnami. Podle typu třídy nebo střední školy (gymnázium, průmyslová škola, ekonomická škola apod.) nebo podle zvolené vysoké školy lze počítat jen příklady v těch kapitolách, které student potřebuje znát.
Nakonec jsou uvedeny výsledky úloh, které umožňují kontrolu správnosti řešení. U složitějších úloh je uveden i stručný návod řešení.
Obsah učebnice
1 Základní poznatky o výrocích a množinách
- 1.1 Výrok, operace s výroky
- 1.2 Obměněná implikace, obrácená implikace
- 1.3 Negace složených výroků
- 1.4 Výroky s kvantifikátory
- 1.5 Operace s množinami - průnik, sjednocení, rozdíl, doplněk
2 Základní typy rovnic a nerovnic
- 2.1 Lineární rovnice a nerovnice
- 2.2 Rovice a nerovnice v součinovém tvaru
- 2.3 Rovnice a nerovnice v podílovém tvaru
- 2.4 Kvadratické rovnice
- 2.5 Vztahy mezi kořeny a koeficienty kvadratické rovnice
- 2.6 Kvadratický trojčlen
- 2.7 Kvadratické nerovnice
- 2.8 Rovnice s neznámou ve jmenovateli
- 2.9 Nerovnice s neznámou ve jmenovateli
- 2.10 Rovnice s neznámou pod odmocninou
- 2.11 Nerovnice s neznámou pod odmocninou
- 2.12 Rovnice s neznámou v absolutní hodnotě
- 2.13 Nerovnice s neznámou v absolutní hodnotě
- 2.14 Řešení rovnic metodou substituce
- 2.15 Reciproké rovnice
- 2.16 Soustavy rovnic
- 2.17 Řešení soustav rovnic metodou substituce
- 2.18 Soustavy nerovnic
- 2.19 Slovní úlohy
3 Rovnice s parametrem
- 3.1 Lineární rovnice s parametrem
- 3.2 Rovnice s neznámou ve jmenovateli
- 3.3 Rovnice s neznámou pod odmocninou
- 3.4 Neznámá v absolutní hodnotě
- 3.5 Soustavy rovnic
- 3.6 Kvadratické rovnice s parametrem
- 3.7 Neznámá ve jmenovateli (po úpravě kvadratické rovnice)
4 Funkce
- 4.1 Definice funkce
- 4.2 Rovnost funkcí
- 4.3 Definiční obor funkce
- 4.4 Hodnota funkce, obor funkčních hodnot
- 4.5 Funkce složená
- 4.6 Vlastnosti funkcí
- 4.7 Vztahy mezi grafy funkcí
- 4.8 Lineární funkce
- 4.9 Kvadratické funkce
- 4.10 Úprava výrazu - graf funkce
- 4.11 Exponenciální funkce
- 4.12 Logaritmus čísla
- 4.13 Logaritmická funkce
- 4.14 Grafické řešení rovnic a nerovnic
- 4.15 Inverzní funkce
5 Exponenciální a logaritmické rovnice a nerovnice
- 5.1 Exponenciální rovnice
- 5.2 Logaritmické rovnice
- 5.3 Exponenciální nerovnice
- 5.4 Logaritmické nerovnice
6 Goniometrické funkce a trigonometrie
- 6.1 Velikost úhlu - míra stupňová, míra oblouková
- 6.2 Orientovaný úhel
- 6.3 Hodnoty goniometrických funkcí y = sin x, y = cos x
- 6.4 Grafy goniometrických funkcí y = sin x, y = cos x
- 6.5 Hodnoty goniometrických funkcí y = tg x, y = cotg x
- 6.6 Grafy goniometrických funkcí y = tg x, y = cotg x
- 6.7 Grafy goniometrických funkcí s absolutními hodnotami
- 6.8 Cyklometrické funkce
- 6.9 Záklaní vztahy mezi funkcemi
- 6.10 Vzorce pro dvojnásobný úhel
- 6.11 Součtové vzorce
- 6.12 Vzorce pro součet a rozdíl goniometrických funkcí
- 6.13 Vzorce pro poloviční úhel
- 6.14 Grafy funkcí - užití vzorců
- 6.15 Vztahy pro úhly v trojúhelníku
- 6.16 Sinová a kosinová věta
- 6.17 Vzorce pro obsah trojúhelníku, čtyřúhelníku
- 6.18 Vzorce pro poloměry kružnic trojúhelníku opsané a vepsané
- 6.19 Pravidelné mnohoúhelníky
7 Goniometrické rovnice a nerovnice
- 7.1 Goniometrické rovnice
- 7.2 Goniometrické nerovnice
8 Mocninné funkce, lineární lomená funkce
- 8.1 Grafy mocninných funkcí
- 8.2 Grafy lineárních lomených funkcí
- 8.3 Inverzní funkce k funkcím mocninným
- 8.4 Inverzní funkce k funkci lineární lomené
- 8.5 Počítání s odmocninami
- 8.6 Počítání s mocninami s celým exponentem
- 8.7 Počítání s mocninami s racionálním exponentem
- 8.8 Úpravy výrazů obsahujících mocniny a odmocniny
9 Posloupnost a řady
- 9.1 Způsoby zadání posloupnosti
- 9.2 Vlastnosti posloupností
- 9.3 Aritmetická, geometrická posloupnost
- 9.4 Zápisy pomocí Σ
- 9.5 Užití geometrické posloupnosti
- 9.6 Nekonečná geometrická řada
10 Geometrie - konstrukční úlohy
- 10.1 Základní typy bodových množin
- 10.2 Tečna z bodu ke kružnici
- 10.3 Konstrukce kružnic požadovaných vlastností
- 10.4 Konstrukce trojúhelníků a čtyřúhelníků
- 10.5 Konstrukce úseček
- 10.6 Shodná zobrazení
- 10.7 Skládání osových souměrností
- 10.8 Hledání minimálního součtu úseček (Hledání dráhy kulečníkové koule)
- 10.9 Stejnolehlost
- 10.10 Skládání rotace a stejnolehlosti
11 Geometrie - výpočty
- 11.1 Trojúhelníková nerovnost
- 11.2 Úhly střídavé, souhlasné, vedlejší, vrcholové
- 11.3 Úhly v trojúhelníku
- 11.4 Shodnost trojúhelníků
- 11.5 Podobnost trojúhelníků
- 11.6 Pythagorova věta a Euklidovy věty
- 11.7 Středový a obvodový úhel
- 11.8 Mocnost bodu ke kružnici
- 11.9 Aritmetický a geometrický průměr
12 Stereometrie
- 12.1 Vzájemná poloha dvou přímek, přímky a roviny, dvou rovin, tří rovin
- 12.2 Řezy
- 12.3 Průnik dvou rovin
- 12.4 Průnik přímky s rovinou
- 12.5 Průnik přímky s povrchem tělesa
- 12.6 Vzdálenost dvou bodů
- 12.7 Vzdálenost bodu od přímky
- 12.8 Vzdálenost rovnoběžných přímek
- 12.9 Vzdálenost mimoběžek
- 12.10 Vzdálenost bodu od roviny
- 12.11 Vzdálenost rovnoběžných rovin
- 12.12 Odchylka dvou přímek
- 12.13 Odchylka přímky od roviny
- 12.14 Odchylka dvou rovin
- 12.15 Další úlohy
- 12.16 Obsah řezu
- 12.17 Objemy a povrchy těles
13 Vektory
- 13.1 Vektor, souřadnice vektoru
- 13.2 Sčítání a odčítání vektorů, násobek vektoru
- 13.3 Lineární kombinace vektorů
- 13.4 Lineárně závislé a lineárně nezávislé vektory
- 13.5 Velikost vektoru
- 13.6 Skalární součin dvou vektorů u . v
- 13.7 Vektorový součin dvou vektorů u × v
- 13.8 Smíšený součin tří vektorů (u × v) . w
14 Analytická geometrie v rovině
- 14.1 Rovnice přímky
- 14.2 Úsečka, polopřímka, polorovina
- 14.3 Vzájemná poloha přímek
- 14.4 Odchylka dvou přímek
- 14.5 Výpočty vzdáleností
- 14.6 Zobrazení v analytické geometrii
- 14.7 Další úlohy
- 14.8 Vyšetřování množin bodů dané vlastnosti
15 Analytická geometrie v prostoru
- 15.1 Přímka v prostoru
- 15.2 Vzájemná poloha přímek v prostoru
- 15.3 Rovina
- 15.4 Vzájemná poloha přímky a roviny
- 15.5 Vzájemná poloha dvou rovin
- 15.6 Vzájemná poloha tří rovin
- 15.7 Odchylka dvou přímek
- 15.8 Odchylka přímky od roviny
- 15.9 Odchylka dvou rovin
- 15.10 Vzdálenost dvou bodů v prostoru
- 15.11 Vzdálenost bodu od přímky v prostoru
- 15.12 Vzdálenost bodu od roviny
- 15.13 Vzdálenost mimoběžek
- 15.14 Souměrnosti v prostoru
- 15.15 Další úkoly
- 15.16 Úlohy na tělesech
16 Kuželosečky
- 16.1 Kružnice
- 16.2 Elipsa
- 16.3 Hyberbola
- 16.4 Parabola
- 16.5 Obecná rovnice kuželosečky
- 16.6 Vnitřní (vnější) oblast kuželosečky
- 16.7 Kuželosečka a přímka
- 16.8 Tečna v bodě kuželosečky
- 16.9 Tečna z bodu ke kuželosečce
- 16.10 Tečna rovnoběžná s danou přímkou
- 16.11 Tečna kolmá k dané přímce
- 16.12 Tečna daným směrem
- 16.13 Další úkoly
- 16.14 Vyšetřování množin bodů dané vlastnosti
17 Komplexní čísla
- 17.1 Algebraický tvar komplexního čísla
- 17.2 Mocniny imaginární jednotky i
- 17.3 Znázornění komplexních čísel v Gaussově rovině
- 17.4 Čísla komplexně sdružená
- 17.5 Absolutní hodnota komplexního čísla
- 17.6 Goniometrický tvar komplexního čísla
- 17.7 Umocňování komplexních čísel
- 17.8 Odmocňování komplexních čísel
- 17.9 Rovnice v množině komplexních čísel
- 17.10 Kvadratická rovnice v množině komplexních čísel
- 17.11 Binomická rovnice
18 Kombinatorika a binomická věta
- 18.1 Faktoriál čísla - n !
- 18.2 Kombinační číslo, vlastnosti kombinačních čísel
- 18.3 Rovnice a nerovnice s kombinačními čísly
- 18.4 Pravidlo kombinatorického součinu
- 18.5 Variace
- 18.6 Permutace
- 18.7 Kombinace
- 18.8 Variace, kombinace - rovnice
- 18.9 Variace, permutace, kombinace s opakováním
- 18.10 Binomická věta
- 18.11 Důkaz matematickou indukcí
19 Difereniální počet a integrální počet
- 19.1 Limita funkce ve vlastním bodě
- 19.2 Limita funkce v nevlastním bodě
- 19.3 Jednostranné limity
- 19.4 Definice derivace funkce
- 19.5 Pravidla pro výpočet derivace
- 19.6 Tečna ke grafu funkce
- 19.7 Funkce rostoucí, klesající
- 19.8 Druhá derivace funkce
- 19.9 Maximum, minimum funkce
- 19.10 Průběh funkce
- 19.11 Derivace implicitní funkce
- 19.12 Derivace funkce a výpočet limity
- 19.13 Slovní úlohy řečené pomocí derivací
- 19.14 Primitivní funkce
- 19.15 Určitý integrál
- 19.16 Obsah rovinného obrazce
- 19.17 Objem rotačního tělesa
20 Pravděpodobnost a statistika
- 20.1 Definice pravděpodobnosti, vlastnosti pravděpodobnosti, binomické rozdělení
- 20.2 Aritmetický průměr, modus, medián, směrodatná odchylka, variační koeficient
Výsledky
Použité matematické symboly a značky
Seznam použité literatury